make possible

Applied Materials Confidential

\ ) /// 4«%/ .,M,./
.,/.,,.,,/ % WV //

e / \ &
> &N\ /f._
‘, \ D, /W/// //////,%/a// \

QA / \ |

N

QI AREHER.

van den Berg, J.A., Rossall, A.K., Alencar, I.,
Trombini, H., Grande, P.L.

G.G.

England, J.G

Marmitt,

Plasma Doping Process

L TE LR N N
R DLRUZANERN | NN



Overview

= Description of plasma doping (PLAD)

= Observations to be explained

= Use of dynamic bca model TRIDYN to describe PLAD
* TRIDYN PLAD Model 1 - Simple

= Metrology to measure PLAD - why MEIS

= Use of TRI
= Use of ME
* TRIDYN P
= Summary

DYN to guide analysis of MEIS
S to quide inputs to TRIDYN

_AD Model 2 — Calibrated by MEIS
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PLAD Process Integration
0. Lithography

Patterned photoresist
selects implant areas

1. Implant 2. Wet Cleans 3. Anneal 4. DHF
Introduce dopant Remove photoresist 1000°C spike Remove surface oxide

Activate dopant
Repair damage

= Substrates In this study are un-patterned wafers
= No photoresist, but follow steps 1-4 to mimic production process
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PLAD Process

= Wafer biased (pulsed) in AsH;/H, plasma + plasma +

= Wafer irradiated with:

= lons
» Total flux measured in Faraday Si wafer
» Composition unknown Faraday (-V)

» Direction normal to substrate - ions
accelerated across the sheath

= Neutrals +
» Flux unknown
» Composition unknown

Key
AS Ions AsS neutrals

» Direction unknown (Other ions and neutrals not shown)
» Sticking coefficients unknown
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Post Implant

Implant
direction

Post Clean

AsH,/H,/7keV/1E16cm-?
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TEM /EDS
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(Most) oxide survives anneal (Most) oxide removed

'coFsJs20
VSE0268NC
s1 COFSJ820

VSEO268NC r
s2 COFsJ820

Post Anneal one

Post Clean

14.3nm

‘ '1.2nm’

5.5nm
N N et o T TR iRl

Dark line associated with Re-crystalised layer Re-grown native oxide (?)
wafer “surface”

AsH./H,/7keV/1E16cm-2

7  External Use Varian Semiconductor Equipment @_m MATERIALS



PR A AT PP A
s . - v y v
v .\“\\u.\\q‘. £ A ™
SIS e / AT
. Y - ; , AL
7 - A I \\x. L o
n 4 7 p 7 ”
7 - T ’ i i
v /e

TN
=y

wiug”

Varian Semiconductor Equipment @:m QAEJTEHEB

4 keV (15%

»

B

uuL-gi

External Use

8

Post Clean TEM
*5% AsH; except 4keV case

vs Energy
AsH,/H,/1E16cm2



[P
“T

anar Particle Beam Models

RIM”:

= Developed by Biersack & Ziegler in 1983

Define target by elemental composition of layers
Layers are STATIC - do not change during implant
Particle collisions - binary collision approximation
WWW.Srim.org

TRIDYN:

= Developed by Moeller and Eckstein in 1984
= Uses “TRIM” core of binary collision approximation
= Define target by elemental composition of its layers

= Layers are DYNAMIC - account for atoms
entering/leaving substrate and moving between layers

= W. Moeller and W. Eckstein, NIM B2 (1984) 814
= TRIDYN page via https://www.hzdr.de
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Surface

AXq

AXi Axi+1

Unaffected
Depth
N |

(a)

(b)

AXy
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https://www.hzdr.de/

RIDYN Model 1 - Simple

= lons

» Total ion flux (1E16/cm?) assumed to be As* with normal density of elemental As
= Neutral Deposition

» All neutrals assumed to be AsH,° atoms deposited simultaneously with ions

» AsH,° neutral flux of 10x As* ion flux gives reasonable fit to data

» AsH,° represented by elemental As with density 35% of “normal” As
= Sj surface at +10A

Q
o

0
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Depth (A)
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TEM / EDS
What happened to

Atomic Composition (%)

the extra deposition? Deep As
lons not
measured
= 350 dense As has same Z
contrast as Si
= Modelled clean by: [O]
. 80
= Removing all As down to 70 fﬁfﬁéed
60
Depth (0) region

40

= Assuming [O] = 2x[S]] ...
= ... but reducing [O] when
[Si]>2.3E22 cm3 .
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TRIDYN Model 1 — Profile Features

[2)

&
Thicker S ;
deposition than Té; AE+2) %
observed o =

g :

c Q

S ©

< Q.

o %)
Range of Lf_) -
intermixed Si = | Damage
defines layer > beyond a/c
that survives Interface seen
clean by MEIS

Depth (nm)

TRIDYN profiles aligned to dark line
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TRIDYN Model 1 - Profiles vs Energy

1keV case
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Comments -1

= TRIDYN PLAD Model 1 qualitatively
explains features observed in PLAD
Implants

= Only invoked binary collision
approximation physics (e.g no RED)

= Chemistry can happen (surface decoration,
snow ploughing, segregation)

= Graded density oxide predicted — can we
measure this*?

= Thicker deposition than observed — explain

= Can improved TRIDYN model show the a/c ' Deptﬁ(nm)
Interface occuring at same Si dpa?

= How quantitative can an improved TRIDYN

model be? * |gor Alencar - this session
Joshua Rideout poster — PAS of these samples
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Metrology — Why MEIS

= Avoided dynamic SIMS and dynamic XPS
» lon beam mixing / variable sputter rate effects
» Matrix effect for secondary ionisation in SIMS

2% AsH3
5% AsH3

g ——— 10% AsH3
= TEM / EDS = WA
» “Curse of the TEM” — what does a grey layer _?3200_
represent? = o
» EDS reports atomic fractions only ? ]
= MEIS o
60 70 80 90
» No ion beam mixing or variable sputter rate effects Energy (keV)
» No matrix effects MEIS spectra showing samples not
2 3\ : . .
» Absolute atoms / cm?# (— atoms/cm® with significantly different for % AsH3

iIndependent thickness measurement)
» Understand spectrum fitting
» Control sample orientation
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Medium Energy lon Scattering Methodology

Apparatus

= He/100keV 54.7° scattering angle 90° for double
aligned (47.7° tilt, 7° twist for random) at Huddersfield?*

= Report atomic fraction profiles using IGOR

MEIS Spectral Analysis
= | require atomic concentrations to compare to TRIDYN

= Atomic fraction (without density) often implies standard
densities - not the case in these samples?

= | used POWERMEIS? with small number of input layers

= Did | do it right?

* TRIDYN informed POWERMELIS layer densities /
compositions

= TEM oxide thicknesses (not always same samples)

16 External Use

1. Jaap van den Berg / Andrew Rossall talks
2. Gabriel Marmitt poster - POWERMEIS
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Spectrum Fitting Symbols/dotted  concentration Profiles

= POWERMEIS As Received
MEIS Spectrum I
X | o =T ]

Red line = POWERMEIS fit

N\ ole .l
Sl
A .
7S S ~ Solid lines

/ = TRIDYN

Atomic Concentrations (atoms/cc)
- N w Y
X X X X
= = = =
o o o o
N N N N

e — e
B = Data / 20 -15” .10 -5 0 5 10 15 20
/ Depth (nm)
Normalisation factor between
data and fit Thickness of Depth (0) = original Si
deposition surface in TRIDYN Models

from TEM APPLIED
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As Implanted As Received

5x10% e —
oS X o T
2 J 0'/ : i
£ 4x107 = = M
o) | [ As
8 =0
s - TRIDYN Model 1
S X ol /‘ under-estimated
s 1 ‘ [Si]
g 2%x10% o3
SN | 2 - TRIDYN Model 1
(&) i I .
£ 49 5 a __—1 over-estimated
O : : / ‘ «— :
< | [As]

0 +—n_ . ——

20 -15 -10 5 0 5 10 15 20

_ o _ Depth (nm)
Profile within substrate will be used to

explain post clean and anneal
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As Implanted — As Effusion

As Received

5x10%

4x10%

3x10%

2x10%

Atomic Concentrations (atoms/cc)
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Algorithm

Particles

1

e12
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After 17 Days in Atmosphere
|

5104+ g
. | / T si
4x10 As| ]
=0
3x10%
.
b
2x10% ot ¢
1x10%
. [t

Atomic Concentrations (atoms/cc)

Normalisation factor kept constant

Algorithm Particles x sr

Canvag)s.cam

= Sample left in vacuo for 17 days did not change (not shown)

= Clearly sample has lost As, gained O over 4 months
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After 4 Months in Atmosphere
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= MEIS analysis guided by TRIDYN suggests sample has also lost Si !
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Alternative Fitting — Post Implant after 4 Months

Change Normalisation Only As Effuses Change Beam Energy

= |ncrease 99.5 to 100.5 keV fits
As peak - how fit Si edge?

= Variations with incident angle
weak

= Would have to = ... leaving Si behind
Increase As in sample = Would need to adjust As
profile at all depths

Varian Semiconductor Equipment @ ’QETEHAEE
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Arsenolite Formation

= As effuses from surface In
atmosphere — not in vacuo — over a
time scale of months

= Consistent with report of Meirer et
al, Applied Physics Letters 101
(2012) 232107

= Si cap forms and oxidises (— forming
a barrier to slow down As effusion?)

= S| also lost?

= As profile in substrate unchanged /
ANRAAAARRARAARAARARS

APPLIED
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TRIDYN Model 2

= MEIS shows need to improve TRIDYN model inputs
= Reduced “heavy” ion fluence to half measured ion fluence
= Remainder are H ions (not included)

= Decreased neutral : heavy ion ratio vs energy using a linear relationship to be
consistent with other observations (not shown)

= As neutrals assumed to have elemental density

= H neutrals included to account for under-dense deposition

= Add Si neutral flux to give ~1E22cm-3 Si observed in deposited layer at 7keV
» Assumed constant through implant — simplest assumption

= Siions included - if there are neutrals — should be ions
» Reduces deep As to better fits TEM/EDS

= No native oxide on substrate — assumed to be immediately etched away by H
plasma
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TRIDYN Model 2 — Post Implant, Clean, Anneal

As Received

Atomic Concentrations (atoms/cc)

5x10% R —
3 8
3 ' i T + S
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& | =0
8 22 ¢/ ¢
& 3x10 | :
< i ‘/
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c ——
o ! ~
© 22
] :
£ 1x10 PZEES |
g | N
0 - :-}rr
20 -15 -10 -5 O 5 10 15 20
Depth (nm)

mlsice 3 @awTl_szmecsdied fe
Algorthm Particles x sr 1e12
Caleulation Normalization £e3
Output
Download simulation
Beam
File name AMAT1_AsReceived.dat
Detector
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¢Post Clean

Post Anneal
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Cutput . : Cutput : °
Beam mmm e . Dwnhsdmulamn.t
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TRIDYN Model 2 — Post Implant

As Recelved

5x10%

= N w S
X X X X
[T = AR AR
o o o o
N N N N
N N N N

Atomic Concentrations (atoms/cc)

sl cefveddez Camaslco
Algorithm Particles x sr 1e12
Calculation Mormaliz Ee3

Output

Download simulation X,
Beam
File mame AMAT1_AsReceived dat
Dietect

-20
Depth (nm)
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TRIDYN Model 2 — Post Clean

Cannot have this much [O] in this layer as

[Si]>2.3E22 cm=— hence O peak over-predicted Post Clean
L L
5X10% N P —
& 22 ol / Sl
" AN £ 4x10 As
E3 :('_5_: / ------ O
0 &/
§ 3x10”
: A
Algorithm Parti : — § 2X1022 M
articles x sr 112 c
Calculation Mormalization 4e3 o
Cutput U
2 1x10%
Detector File name AMATI_1.dat 8
<

-20 -15 -10/ -5 0 5 10 15 20
Depth (nm)

Removed As down to Depth(0)
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TRIDYN Model 2 — Post Anneal
Aligned data — POWERMEIS Post Anneal

calculates random 5x10% -/ e —
m | <l
s N | 7 s
g 4x10 AS
S 3x10% s
e : A
10E3 -IE 3
_ § 2%102 A\ﬁ—/‘/
- - - Cumaco @)
@)
Algorithm Particles x sr 1e12
Calculation Normalization 423 .g 1X1022
O
g
Detector File name AMATZ 2 .dat O \ Y ‘
UL DL L BN B IR

20 -15 -10 -5 0 5 10 15 20

Major difference between Depth (nm)
anneal and clean is less As In
surface bin
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Model 2 vs Energy

6E+22

= a/c interface at
same Si dpa (50)
for all energies
Depth of As ions
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displaced Si
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0

4E+22 Si

As neutrals
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As ions
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Dose Retention vs Oxide Thickness

= Energy variation
samples are
post anneal —
would have
preferred post
clean!

= Samples are thin
oxide case

30 External Use
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Atomic Concentrations (atoms/cc)

MEIS (Post Anneal) vs TRIDYN (Post Clean)
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MEIS (Post Anneal) vs TRIDYN (Post Clean)
Note log scale AkeV
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MEIS (Post Anneal) vs TRIDYN (Post Clean)
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MEIS (Post Anneal) vs TRIDYN (Post Clean)

" 10keV
Surface contamination? o
3 1 weM —$—T—*
B S+ i
2 g ' As
foen 8 g2 e
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£ |
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= Contributions from ions and knock-ins to As profile more evident with energy
= As retention increases with energy
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Summary

= Many features of planar PLAD can be described using TRIDYN

= MEIS allows TRIDYN input species and fluxes to be measured

* Based on MEIS feedback a simple TRIDYN model was improved by
» Including Si neutrals and ions

» Reducing flux of As and Si ions

= TRIDYN can aid analysis of MEIS spectra

= Small details can give deep insights into PLAD process

= Choices of process and metrology conditions important

= Did a good job of fitting spectra with POWERMEIS?

= This work is being applied to 3D fins using TRISDYN and TOF-MEIS
with PowerMEIS analysis*

*Henrique Trombini — 3D Structures at UFRGS
Daewon Moon — KMAC TOF-MEIS
My talks at IBMM and ANU WorkSho\}a)rian Semiconductor Equipment @APPUE%
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